If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-6=19
We move all terms to the left:
3y^2-6-(19)=0
We add all the numbers together, and all the variables
3y^2-25=0
a = 3; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·3·(-25)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*3}=\frac{0-10\sqrt{3}}{6} =-\frac{10\sqrt{3}}{6} =-\frac{5\sqrt{3}}{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*3}=\frac{0+10\sqrt{3}}{6} =\frac{10\sqrt{3}}{6} =\frac{5\sqrt{3}}{3} $
| 3y+28-6=4y+3 | | 6^(x+1)=4^(2x-1) | | −3x+9=x+25 | | -11(x+4)=-55 | | 1/3=w/(3,1/4) | | (2/5x)-3=4/3(4x-3) | | z+6/5=-8/3 | | 4/3x=3/4=1/2 | | 4x+5=+4x | | x=10^-5.4 | | 3.3x-26.4+x=1.2 | | 2(5x+4)-11=4x+6x-3 | | -8u+3(u+6)=13 | | -64=8r | | 6x(5x+2)=112 | | -k/4.25=-9.2 | | -2(25x-17)=-35 | | 7c+2=3c+46 | | 21y+14=180 | | 5k-7k=-10 | | 3m-11=8m+4 | | K/3+3-3k=6k | | -7r-4=4r+2 | | 0.5x1.4=0.7 | | 31(x+x+2.87)=1275.65 | | 2/3(n-9)=8 | | 36^2x-7=6^x-5 | | 7m=5m+4 | | -4.2=5.2+t | | 1/2(q+4)=21/4 | | x^2-2x-172.5=0 | | 2(x+1)+3=-7 |